蒙氏体积组教案5篇

时间:
Cold-blooded
分享
下载本文

教案的结构清晰,有助于教师在课堂上保持良好的节奏,教师需在教案中考虑学生的情感需求,促进积极学习态度,以下是丫丫文章网小编精心为您推荐的蒙氏体积组教案5篇,供大家参考。

蒙氏体积组教案5篇

蒙氏体积组教案篇1

教学目标:

1、知识技能

运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、过程方法

让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、情感态度价值观

通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

圆柱体体积的计算公式的推导过程及其应用。

教学难点:

理解圆柱体体积公式的推导过程。

教学准备:圆柱体积公式推导演示学具、多媒体课件。

教学过程:

一、复习导入

同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体

的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

二、图柱转化,自主探究,验证猜想。

(一)猜想。

1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)

[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]

2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

(二)操作验证。

1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

在操作时,学生分组边操作边讨论以下问题:

①拼成的近似长方体的体积与原来的圆柱体积有什么关系?

②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?

?.拼成的近似长方体的高与原来的圆柱的高有什么关系?

2、小组代表汇报

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

3、电脑演示操作

(1)电脑演示圆柱体转化成长方体的过程:

仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的`什么?

动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?

(分的分数越多,拼成的图形就越接近长方体)

(2)根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高

圆柱的体积=底面积×高

v=sh

(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

三、练习巩固,灵活应用

闯关1.一根圆柱形钢材,底面积是75平方厘米,长是90厘米。它的体积是多少?

让学生试做,集体反馈。

闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(c)和高(h)呢?

学生讨论、交流、汇报。

小结:解决以上问题的关键是先求出什么?(生:底面积)

闯关3.下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的。)学生在练习本上独立完成,集体反馈。

四、课堂小结

学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)

五、布置作业

教科书第21页练习三第1-4题。

板书设计:

圆柱的体积

长方体的体积=底面积×高

圆柱的体积=底面积×高

v= sh

蒙氏体积组教案篇2

教学目标:

1、通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能运用公式解答有关的实际问题。

3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

教学过程

一、创设情境,引发猜想

1. 电脑呈现出动画情境(伴图配音)。

夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

2. 引导学生围绕问题展开讨论。

问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)

过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

二、自主探索,操作实验

下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

出示思考题:

(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

(2)你们的小组是怎样进行实验的?

1. 小组实验。

(1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。

(2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。

2. 大组交流。

(1)组织收集信息。

学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:

① 圆柱的体积正好是圆锥体积的3倍。

② 圆柱的体积不是圆锥体积的3倍。

③ 圆柱的体积正好是圆锥体积的8倍。

④ 圆柱的体积正好是圆锥体积的5倍。

⑤ 圆柱的体积是等底等高的圆锥体积的3倍。

⑥ 圆锥的体积是等底等高的圆柱体积的1/3 。

(2)引导整理信息。

指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

(3)参与处理信息。

围绕3倍关系的情况讨论:

① 请这几个小组同学说出他们是怎样通过实验得出这一结论的?

② 哪个小组得出的结论更加科学合理一些?

圆锥的体积是等底等高的圆柱体积的1/3。

(突出等底等高,并请他们拿出实验用的器材,自己比划、验证这个结论。)

③引导学生自主修正另外两个结论。

3. 诱导反思。

(1)为什么有两个小组实验的结果不是3倍关系呢?

(2)把一个空心的`圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?

4. 推导公式。

尝试运用信息推导圆锥的体积计算公式。

(1)这里sh表示什么?为什么要乘1/3?

(2)要求圆锥体积需要知道哪两个条件?

5. 问题解决。

童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。

三、运用公式,解决问题

1. 教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?

2. 学生尝试行算,指名板演,集体订正。

3. 引导小结:不要漏乘1/3;计算时,能约分时要先约分。

四、巩固练习,拓展深化(略)

五、质疑问难,总结升华

通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?

回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示。

蒙氏体积组教案篇3

教学目标:

1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

教学重点:

正方体和长方体体积的计算方法。

教学难点:

理解长方体的体积计算公式。

教具:

长、正方体模型、课件、长、正方体形状的纸盒等

教学过程:

创设情境,导入新课

出示长方体模型,您能告诉大家这个长方体体积是多少?并说一说是怎样想的吗?

教师演示,学生感知这个长方体模型的体积(每层有4个,共3层,一共是12个),这个长方体的体积就是12立方厘米。

揭示课题:对一些不可以分割的长方体,我们有没有办法计算的他体积呢?(板书:长方体和正方体的体积)

操作探究,发现规律

学生按照要求用正方体搭出四个不同的长方体并编号。

让学生观察,并作小组交流。

这些长方体的长宽高各是多少?

用了几个小正方体?不数,你怎样计算小正方体的个数?

长方体的体积是多少?和计算小正方体的个数的方法比一比。

根据所搭的长方体填表:(表格略)

根据表格,引导分析,发现规律。

比较每一个长方体的体积,和计算小正方体个数的方法,你能得出什么结论?

引导学生猜想:长方体的体积和他的长宽高有什么关系?

再次探索,验证猜想

出示例题10,让学生摆一摆,再数一数,看看一共用多少个小正方体。

课件演示,组织交流,摆出的长方体长宽高分别是多少?体积是多少立方厘米?这个结果与你刚才的猜想是否一致?

如果让你摆一个长5厘米,宽4厘米,高3厘米的长方体,你能说出要用几个1立方厘米的小正方体吗?学生思考后回答。

引导概括,得出公式

提问:通过刚才的操作,你发现了长方体的体积与它的长宽高有什么关系吗?如何求长方体的体积?

交流的出结论:

长方体的体积=长×宽×高

如果用v表示长方体的体积,用abh分别表示长宽高,你能用字母表示长方体的体积公式吗?

v=abh

启发引导。

正方体是特殊的长方体,你能根据长方体的体积公式写出正方体的体积公式吗?

让学生尝试,再交流得出结论:

正方体的体积=棱长×棱长×棱长

学生阅读教材第26页,说说正方体体积的字母公式。

应用拓展,巩固练习

做“试一试”

先指名说出长方体的长宽高分别是多少?正方体的棱长是多少,再独立计算。交流时先说说公式,再说说怎样列式。

做“练一练”第1题。

观察题中的图形,说出每个图形的长宽高或棱长,在独立完成。

做“练一练”第2题。

先让学生选择几个式子说说其表示的意思,再口算。

课堂作业:

做练习四第2题。

课后作业:

完成练习四第1、3题。

蒙氏体积组教案篇4

教学目标:

1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。

教学重点:

理解和掌握圆柱的体积计算公式,会求圆柱的体积

教学难点:

理解圆柱体积计算公式的推导过程。

教学用具:

圆柱体积演示教具。

教学过程:

一、复述回顾,导入新课

以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)

1、说一说:(1)什么叫体积?常用的体积单位有哪些?

(2)长方体、正方体的体积怎样计算?如何用字母表示?

长方体、正方体的体积=()×()用字母表示()

2、求下面各圆的面积(只说出解题思路,不计算。)

(1)r=1厘米;(2)d=4分米;(3)c=6.28米。

(二)揭示课题

你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)

二、设问导读

请仔细阅读课本第8-9页的内容,完成下面问题

(一)以小组合作完成1、2题。

1、猜一猜,圆柱的体积可能等于()×()

2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系

(1)圆柱的底面积变成了长方体的()。

(2)圆柱的高变成了长方体的()。

(3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母v代表圆柱的体积,s代表底面积,h代表高,那么圆柱的.体积公式可用字母表示为()

[汇报交流,教师用教具演示讲解2题]

(二)独立完成3、4题。

3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?

先求底面积,列式计算()

再求体积,列式计算()

综合算式()

4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)

?要求:完成之后以小组互查,有争议之处四人大组讨论。】

教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。

三、自我检测

1、课本9页试一试

2、课本9页练一练1题(只列式,不计算)

?要求:完成后小组互查,教师评价】

四、巩固练习

课本练一练的2、3、4题

?要求:组长先给组员讲解题思路,然后小组内共同完成】

教师进行错例分析。

五、拓展练习

1、课本练一练的5题

2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?

?要求:先组内讨论确定解题思路,再完成】

六、课堂总结,布置作业

1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。

2、作业:课本练一练6题

蒙氏体积组教案篇5

教学目标

1、知识目标:使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。.

2、能力目标:培养学生初步的空间观念,动手操作能力和逻辑思维能力。

3、情感目标:向学生渗透知识间可以相互转化的辩证唯物主义思想,让学生学习将新知识转化为原有知识的学习方法.

教学重难点

教学重点:圆锥的体积计算

教学难点:圆锥的体积计算公式的推导.

教学工具

ppt课件

教学过程

一、导入新课

1、出示铅锤

师:同学们,我们刚认识了圆锥,在学习“圆锥的认识”时认识了这个物体—铅锤。铅锤的外形是圆锥形的,这个铅锤所占空间的大小叫做这个铅锤的体积。

问:你们有没有办法来测量这个铅锤的体积?

生:排水法

师:同学们回答很积极,想到了之前学过的排水法,那咱们对这个方法进行一下评价(学生想到了,并不是所有的圆锥都可以用排水法来测量体积。比如一些庞大的圆锥形物体)

2、ppt出示圆锥形麦堆和圆锥形的高大的建筑物

像这种比较大的圆锥形的物体就不适合用排水法测量体积,所以我们需要找到一个解决此类问题的普遍的方法。

出示课题圆锥的体积

二、探究新知

1、回忆

师:我们学过那些形状的物体的体积的计算方法

生:长方体正方体圆柱体(学生边说,师边ppt出示图片)

师:我们在推导圆柱体体积的计算方法的时候是将圆柱体转化长方体或者正方体,转化前后体积不变,你觉得圆锥体和哪种形状的物体有关系呢?

生:圆柱体

师:为什么?

生:圆锥体和圆柱体都有圆形的底面

2、猜测

师:既然大家都认为圆锥体和圆柱体由一定的关系,你能大胆猜测一下,圆锥体和圆柱体的体积之间有怎样的关系么?

(学生猜测,找学生说说猜测的结果)

3、验证

师:有了猜测我们就通过实验来验证咱们的猜测(利用学具进行验证,一边实验,一边填写实验记录单)

(找学生读一读表格中需要填写的内容,并提问,比较圆柱和圆锥的时候,是比较的.什么?为学生的实验操作做一个引领。操作过程6-8分钟)

4、实验后讨论,并分组汇报实验结果

(在实验中我设置了两次不同的实验,第一次是等底等高的圆柱和圆锥,第二次是等底不等高的圆柱和圆锥,以便对比得出结论,并不是所有的圆柱和圆锥都符合3倍关系,是有前提条件的)

5、结论

通过操作发现:圆锥的体积是同它等底等高的圆柱体积的1/3

板书:圆柱的体积=底面积×高

圆锥的体积=底面积×高÷3

三、运用知识

1、ppt出示填空和判断

师:我们学会了求圆锥的体积的计算方法,现在我们利用所学知识来解决生活中的实际问题。

2、ppt出示例题3

(学生计算,计算过程中巡视学生解题情况,挑选两种不同的解题方法展示)

四、拓展

ppt出示拓展题

五、总结,谈收获

通过本节课的学习,你有哪些收获?

蒙氏体积组教案5篇相关文章:

幼儿园中班蒙氏数学教案模板5篇

蒙氏教案美术大班教案模板7篇

蒙氏教案美术大班教案7篇

蒙氏教案美术大班教案推荐8篇

蒙氏教案美术大班教案优质6篇

蒙氏教案美术大班教案通用8篇

蒙氏洗脸教案6篇

蒙氏青蛙教案8篇

搬椅子蒙氏教案6篇

蒙氏立方体教案7篇

蒙氏体积组教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
180873