一份结构合理的教案能够帮助教师有效管理课堂时间,教案的结构清晰,有助于教师在课堂上保持良好的节奏,丫丫文章网小编今天就为您带来了蒙氏体积组教案模板5篇,相信一定会对你有所帮助。
蒙氏体积组教案篇1
教学目标
1.学生能够结合具体实物说出体积的含义。知道常用的体积单位,并且能用体积单位合理估计物体的体积的大小。
2.学生通过具体的观察比较、思考交流、感悟体验等学习活动,经历物体体积概念的形成过程,逐步建立空间观念。
3.在学习活动中,培养学生细心观察,认真分析,交流倾听,善于比较的学习习惯。
学情分析
在原来知识结构里:学生学习了线段的长度、面积的大小及相关的计量单位,学生初步建立了一维二维的空间观念。这些为学习新知奠定了基础。
体积对于小学生来说是一个全新的概念。由认识平面图形到认识立体图形,是学生空间观念的一次发展。为了更深入地了解教材的编写意图,我对北师大版、苏教版、人教版的本课内容做了比较。发现它们有一个共同特点:都是通过实验演示或操作活动,让学生在体验中理解体积的含义,构建体积单位的表象。因此,我由学生熟悉的事物入手,引导学生观察、思考、回顾、感知、操作、想象,让学生在体验中感知,在对比中学习,逐步达到对概念的认识与理解。
教学重点:
学生能够在观察思考、感知体验、操作想象等活动中建立体积概念及体积单位的表象。
教学难点:
在具体的体验活动中理解体积的含义,经历体积是1立方厘米、1立方分米、1立方米的大小的表象形成过程。
教学过程
活动1【导入】体积和体积单位
一、对比引入新知。
学生汇报:分别是线段,长方形和正方形,长方体或正方体。
教师引导:
线段有长短之分,长(正)方形和长(正)方体有大小之别。
为了表示物体的长短,我们认识了长度。
为了表示物体平面部分的大小,我们学习了面积。
如果要表示整个物体的大小,那又将产生什么呢?
这节课老师和同学们一块来学习。
?设计意图】对比引入,既能激发学生学习新知的兴趣,同时又引发学生的思考:这三者相互之间有联系吗?
活动2【活动】体积和体积单位
二、活动揭示概念。
活动一:体验书包里的空间。
提出问题:观察一下自己的书包,是不是还可以再放些东西?
学生汇报:有的已经装满,有的还可以再放些东西。
教师引导:书包没塞满说明它还有一定的空间。书包已经塞满,说明它没有了空间。它的空间被占据了。(板书:空间)
追问:书包的空间被谁占据了?
学生汇报:书占据了书包的空间,学习用具也占据了一定的空间,还有一些喜欢吃的食品,同样也可以把书包的空间占据了。
追问:这说明什么?
学生汇报:任何物体都会占据一定的空间的。(板书:物体占空间)
教师进一步引导:大家可以举例说一说生活中物体占有空间的现象。
学生交流:我们占据教室的空间教室占据学校的空间学校占据小区的空间……
?设计意图】学生身边引入,通过引导观察和思考,让学生体验书包里有“空间”。并随之拓展,将空间这一概念形象化,具体化,丰富学生的空间表象。
活动二:观察演示实验。
1.盛水的杯子装入石头,水面升高。
2.装满沙的杯子倒出沙子,放入石块,结果沙子不能全部被装入。
3.与第一个实验相比,盛水的杯子装入一块较大石头,水面升高的幅度较大。
提出问题:你能解释实验现象吗?
学生交流:水面升高,是因为石头把水的空间占据了。
沙子不能被装入,是因为石头占据了沙子的空间。
石头较大,占据的空间就较大,水就升的高。
教师归纳:物体要占据空间,并且所占的空间大小是不一样的。(补充板书:物体所占空间的大小)
教师引导:粉笔盒与电脑桌比,粉笔盒占据的空间小,电脑桌占据的空间大……为了更加简洁地表示物体所占空间的大小,我们引入了“体积”(板书)
引导学生叙述:书包的体积是书包所占空间的大小,电脑的体积是指……教室的体积是指……
引导概念:物体的体积是表示物体所占空间的大小。
?设计意图】为了进步加深学生对“空间”的理解,以及对概念的完善,继续通过演示实验,帮助学生直观感受物体所占空间的大小,步步相扣,层层推理,逐步引出物体的体积概念,较好地处理好了体积概念的抽象。
三、多角度认识单位
1.认识单位产生的必要性。
物体所占空间有大有小,所占空间大就是体积大,所占空间小,就是体积小。
下面的电冰箱、小水杯和篮球,哪个体积大?哪个体积小?
学生交流:电冰箱体积最大小水杯的体积最小。
问题引导:上面的物体,体积大小非常直观,若是像这样的两个物体,你能一子比较出它们体积的大小吗?
学生建议将它们分成若干个大小相同的小立方体。教师课件演示。
结论:要想比较它们的大小,必须要有统一的'体积单位。
2.对比加深记忆。
同学们打开课本第39面,自学书上内容,看看常见的体积单位有哪些?书上是怎样描述的。
学生汇报:棱长是1厘米的正方体,体积是1立方厘米
棱长是1分米的正方体,体积是1立方分米
棱长是1米的正方体,体积是1立方米
填写表格:通过比较,使学生能够感受单位的共同结构与特征。从而加深记忆。
意义
常用单位
简写符号
长度
面积
体积
3.建立单位表象。
教师出示准备好的1立方厘米和1立方分米的正方体模型和其它实物。
辨认:让学生找出1立方厘米的正方体,并说说身边哪些物体的体积大约是1立方厘米。
举例:一个手指尖的大小、一个筛子的大小、一个键盘字母按键的大小等。动手摸一摸,亲自学生感受1立方厘米实际大小。
操作:用12个1立方厘米的正方体摆成一个长方体,有几种摆法?
想象:棱长是1厘米的正方体,体积是1立方厘米。2个这样正方体,体积是2立方厘米,10个呢?100个呢?1000个呢?那么1000立方厘米又有多大呢?
②找出1立方分米的正方体,说说身边哪些物体的体积大约是1立方分米。
感受1立方分米实际大小或几立方分米。
认识1立方米
先让学生比划。看看教室里面那些物体的体积接近1立方米。
学生体验:三把米尺借助教室的一个墙角共同来做一个1立方米的空间。1立方米的空间到底有多大,老师想让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?”
教师可进一步举例:一个橱柜的大小,一个电脑柜的大小约是1立方米。
1立方米的水可以装满500个暖瓶。
?设计意图】学生对一个新的概念的接受和形成需要不断地体验和强化,本环节学生通过观察、比较、感知、操作、想象等活动逐步建立单位的表象,较好地渗透了单位化的思想。
活动3【练习】体积和体积单位
四、巩固运用提升。
1.结合具体实物说一说体积的含义。
电脑的体积是指电脑所占空间的大小。
2.在下面括号里填上适当的单位。
蒙氏体积组教案篇2
教学内容:
教材第10~12页圆柱的体积公式,例1、例2和练一练,练习二第1~5题。
教学要求:
1.使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。
2.培养学生初步的空间观念和思维能力;让学生认识转化的思考方法。
教具准备:
圆柱体积演示教具。
教学重点:
理解和掌握圆柱的体积计算公式。
教学难点:
圆柱体积计算公式的推导。
教学过程:
一、铺垫孕伏:
1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)c=6.28米。
要求说出解题思路。
2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。
3.提问:什么叫体积?常用的体积单位有哪些?
4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积高)
二、自主研究:
1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)
2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。
3.公式推导。(可分小组进行)
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)
(3)探索求圆柱体积的公式。
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。
(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积高)用字母表示:。(板书:v=sh)
(5)小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
4.教学例1。
出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)
0.9米=90厘米2490=2160(立方厘米)
5.做练习二第1题。
让学生做在课本上。指名口答,集体订正。追问:圆柱的体积是怎样算的?
6.教学试一试一个圆柱的底面半径是2分米,高是8米,求它的体积。指名一人板演,其余学生做在练习本上。评讲试一试小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面积再求体积。
7.教学例2。
出示例2,审题。小组讨论计算方法,然后学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位,结果保留整数。)
三、巩固练习
第12页,练一练。
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式v=sh。
五、布置作业
练习二第2,3,4,5题及数训。
六、板书设计:
圆柱的体积
长方体的体积=底面积高
圆柱的体积=底面积高
v=sh
蒙氏体积组教案篇3
教学内容:北师大版数学六年级下册5——6页。
教学目标:
1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学重点:目标1。
教学难点:目标2。
教学过程:
活动一:复习旧知,巩固学过的公式。
1、一个直径是100毫米的圆,求周长。
2、一个半径3厘米的圆,求周长和面积。
3、一个长为3米,宽为2米的长方形,它的面积是多少?
4、出示圆柱体的模型,说说它有什么特征?
活动二;探究新知。
1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)
要解决这个问题,就是求什么?
2、圆柱的表面积包括哪几部分?
3、圆柱的表面积的计算关键在哪一部分?
4、探索圆柱侧面积的计算方法。
1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。
2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?
3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。
4)长就是圆柱的底面圆的周长,宽就是圆柱的高。
5)请你来总结一下圆柱侧面积的.计算方法。
6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。
活动三:新知识的运用。
1、求底面半径是10厘米,高30厘米的圆柱的表面积。
2、教师板书:
侧面积:2╳3.14╳10╳30=1884(平方厘米)
底面积:3.14╳10╳10=314(平方厘米)
表面积:1884+314╳2=2512(平方厘米)
要求按步骤进行书写。
2、试一试。
做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?
求至少需要多少铁皮,就是求水桶的表面积。
这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。
3、练一练。书第6页第1题。
3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。
蒙氏体积组教案篇4
教学内容:
教科书第52页练习十二的第69题。
教学目的:
通过练习,使学生进一步熟悉圆锥的体积计算。
教学过程:
一、复习
1.圆锥的体积公式是什么?
2.填空。
(1)一个圆锥的体积是与它等底等高的圆柱体积的
(2)圆柱的体积相当于和它等底等高的圆锥体积的()倍。
(3)把一个圆柱削成一个最大的圆锥,削去部分的体积相当于圆柱的,相当于圆锥的()倍。
二、课堂练习
1.做练习十二的第6题。
教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积:
让学生分组讨论一下,然后各自让一名学生说说讨论的结果,最后归纳出几种行之有效的测量方法。例如,要求一个圆锥物体的体积,可以先用软尺量出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板
测量出圆锥的高,这样就可以求出圆锥的体积。
2.做练习十二的第7题。
读题后,教师可以先后提问:
这道题已知什么?求什么?
要求这堆沙的重量,应该先求什么?怎样求?
指名学生回答后,让学生做在练习本上,做完后集体订正。
3.做练习十二的第8题。
读题后,教师可提出以下问题:
这道题要求的是什么?
要求这段钢材重多少千克,应该先求什么?怎样求?
能直接利用题目中的数值进行计算吗?为什么?
题目中的单位不统一,应该怎样统一?
分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的.体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。
4.做练习十二的第9题。
读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?
要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。
让学生立做在练习本上,做完后集体订正。
三、选做题
让学有余力的学生做练习十二的第10*、11*、12*题。
1.练习十二的第10*题。
教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?
引导学生利用c=2r可以得到r=。再利用sr,就可以求得s=()。再利用圆锥的体积公式就可以求出其体积。
2.练习十二的第11*题。
这是一道有关圆柱、圆锥体积的比例应用题。
可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。
设圆柱的高为x厘米。
=
x=9。6
(注意:由于圆锥和圆柱的底面积s都相等,所以计算中可以先把s约去。)
3.练习十二的第12题。
这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。
蒙氏体积组教案篇5
【教学内容】
教科书第34~35页例3及课堂活动,练习八1,2,3题。
【教学目标】
1.通过学生体验圆柱体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。
2.倡导交流、合作、实验操作等学习方式,培养学生观察、猜测、分析、比较、综合的学习思考方法。
3.让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感。
【教学重点】
圆柱体积计算方法及应用。
【教学准备】
教具:标有厘米刻度的透明长方体容器和圆柱容器、量筒、多媒体课件。
【教学过程】
一、实验回顾长方体体积计算方法
(1)出示透明长方体容器。
教师:现在我们向这个容器里倒入1厘米深的水,容器里的水会形成什么形体?(长方体)
(教师现场操作倒水)估计一下,有多少立方厘米?
怎样才能知道这层长方体的水有多少立方厘米?
(预设:①计算;②倒入量筒测量)
(2)如果要计算的话,要测量哪些数据?
(请一名学生前台测量,教师注意提醒从内部量)
教师板书数据,全体学生即时计算,一生板演。
学生讲解,教师从算式中用红线勾出表示底面积的部分。
说明:长方体的体积可以用底面积乘高来计算,当高为1 cm时,底面的面积数就是这个长方体所含的体积单位数。
教师再往容器内依次倒入2 cm,3 cm高的水,随机请学生口答出体积数。
(3)揭示:当长方体的高度增加,我们就可以用一层的体积数乘上高度(也就是层数)来求得体积。
二、实验探究,学习新知
1.初次实验
出示标有厘米刻度的圆柱形玻璃容器。
教师:向这个容器里倒入1厘米深的水,水会形成什么形状?(圆柱)
教师操作倒水后:猜一猜,这个圆柱形水柱的体积如何计算?(教师板书学生猜测结果:v=sh)
教师:假如这些猜测合理,我们需要测量哪些数据?(d或r)
一名学生上前台在教师的协助下现场测量,记录下数据。
学生集体按照自己猜测的方法演算结果,并进行相关板演。
教师:怎样证明这些结果的正确性?(量筒测量)
教师将容器中的水倒入量筒,直观验证v=sh的正确性。
2.二度实验
教师:一次实验还不能说明问题,我们再进行几次行吗?
教师往容器中倒入2 cm,4 cm,5 cm,10 cm高的水,学生计算后,师生共同用量筒直观验证,并生成实验表格。
3.实验分析
教师:刚才的实验说明了什么?观察数据你还有哪些发现?
4.回归课本,认识转化法推导圆柱体积,扩展对公式的认识
教师:圆柱体积v=sh,关于这个方法,我们的数学家们用不同的方法进行了相关的.说明,一起来看看。
课件配音演示:
教师:欣赏了数学家的推导方法,再回忆一下我们刚才的实验,你想说点什么吗?
三、实践应用,巩固新知
1.基本技能训练
练习八第1题。
2.拓展应用,促进发展
教学例3。
教师:不告诉圆柱的底面积,你能求出它的体积吗?
课件出示例3:
集体感知题意。全体学生独立完成,两名学生板演后讲解。
教师小结:当求体积的必要条件没有直接告诉时,我们应先根据相关信息予以解决。
3.独立作业
练习八第2,3题。
四、全课总结:
教师:今天我们一起研究了什么知识?在今天的学习中你的最大收获是什么?
蒙氏体积组教案模板5篇相关文章: