一元二次方程的教案8篇

时间:
pUssy
分享
下载本文

教案可以帮助我们更好地引导学生进行自主学习,在教案中,我们可以加入案例分析和实例演示,以帮助学生更好地理解概念,丫丫文章网小编今天就为您带来了一元二次方程的教案8篇,相信一定会对你有所帮助。

一元二次方程的教案8篇

一元二次方程的教案篇1

一、教材分析

1、教材所处的地位和作用:本课是阅读教材p39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2

b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。

4、教学目标:

(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。

(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。

5、数学思想:由感性认识到理性认识。

6、教学重点:

(1)发现根的判别式。

(2)用根的判别式解决实际问题。

7、教学难点:

根的判别式的发现

8、教法:启导、探究

9、学法:合作学习与探究学习

10、教学模式:引导——发现式

二、教学过程

(一)自习回顾,引入新课

1、师生共同回顾:一元二次方程的解法

2、解下列一元二次方程。

(1)x2 -1=0 (2)x2 -2x =-1

(3)(x+1)2- 4=0 (4)x2 +2x+2=0

3、为什么会出现无解?

(二)探索

1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。

2、观察(x+ ) 2= 2 在什么情况下成立?

3、学生分组讨论。

4、猜测?

5、发现了什么?

6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时, 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)

7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)

(1)当b2-4ac> 0时,_______________________

(2)当b2-4ac= 0时,_________________________

(3)当b2-4ac< 0时,_________________________

8、总结:

(1)比较分析学生的讨论分析结果。

(2)由学生总结。

(3)教师根据学生总结情况补充完整。

把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。

(1)当b2-4ac> 0时,_______________________

(2)当b2-4ac= 0时,_________________________

(3)当b2-4ac< 0时,________________________

(三)应用新知:

1、不解方程判定下列一元二次方程根的情况。

(1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____

(2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____

(3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____

2、根据根的情况,求字母系数的取值范围。

例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

(1)读题分析:

a、二次项系数是什么? a=_______

b、一次项系数是什么? b=_______

c、常数项是什么? c=_______

(2)建立等式,根据有个常数根 b2-4ac=0

(3)由学生完成解题过程后教师评价

3、证明

例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

(四)练习

已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

三、作业

1、把例1、例2整理在作业本上。

2、有余力的同学把练习题整理在作业本。

四、教学后记

一元二次方程的教案篇2

(一)引入新课

设问:已知一个数是另一个数的2倍少3,它们的积是135,求这两个数.

(由学生自己设未知数,列出方程).

问:所列方程是几元几次方程?由此引出课题.

(二)新课教学

1、对于上述问题,设其中一个数为x,则另一个数是2x-3,根据题意列出方程:

这是一个关于x的一元二次方程.下面先复习一下列一元一次方程解应用题的一般步骤:

(1) 分析题意,找出等量关系,分析题中的数量及其关系,用字母表示问题里的未知数;

(2) 用字母的一次式表示有关的量;

(3) 根据等量关系列出方程;

(4) 解方程,求出未知数的值;

(5) 检查求得的值是否正确和符合实际情形,并写出答案.

列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤一样,只不过所列的方程是一元二次方程而非一元一次方程而已.

2、例题讲解

例1 在长方形钢片上冲去一个小长方形,制成一个四周宽相等的长方形框(如图111).已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm,求这个长方形框的框边宽.

(三)分析:

(1)复习有关面积公式:矩形;正方形;梯形;三角形;圆.

(2)全面积=原面积 截去的面积 30

(3)设矩形框的框边宽为xcm,那么被冲去的矩形的长为(302x)cm,宽为(20-2x)cm,根据题意,得.

注意:方程的解要符合应用题的实际意义,不符合的应舍去.

例2 某城市按该市的.九五国民经济发展规划要求,1997年的社会总产值要比1995年增长21%,求平均每年增长的百分率.

分析:(1)什么是增长率?增长率是增长数与原来的基数的百分比,可用下列公式表示:

增长率=

何谓平均每年增长率?平均每年增长率是在假定每年增长的百分数相同的前提下所求出的每年增长的百分数.(并不是每年增长率的平均数)

有关增长率的基本等量关系有:

①增长后的量=原来的量(1+增长率),

减少后的量=原来的量(1--减少率),

②连续n次以相同的增长率增长后的量=原来的量(1+增长率);

连续n次以相同的减少率减少后的量=原来的量(1+减少率).

(2)本例中如果设平均每年增长的百分率为x,1995年的社会总产值为1,那么

1996年的社会总产值=

1997年的社会总产值= = .

根据已知,1997年的社会总产值= ,于是就可以列出方程:

3、巩固练习

p.152练习及想一想

补充:将进货单价为40元的商品按50元售出时,就能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定为多少?这时应进货多少?

(四)课堂小结

善于将实际问题转化为数学问题,要深刻理解题意中的已知条件,严格审题,注意解方程中的巧算和方程两根的取舍问题.

一元二次方程的教案篇3

一、复习目标:

1、能说出一元二次方程及其相关概念,;

2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。

二、复习重难点:

重点:一元二次方程的解法和应用.

难点:应用一元二次方程解决实际问题的方法.

三、知识回顾:

1、一元二次方程的定义:

2、一元二次方程的常用解法有:

配方法的一般过程是怎样的?

3、一元二次方程在生活中有哪些应用?请举例说明。

4、利用方程解决实际问题的关键是。

在解决实际问题的过程中,怎样判断求得的结果是否合理?请举例说明。

四、例题解析:

例1、填空

1、当m时,关于x的方程(m-1)+5+mx=0是一元二次方程.

2、方程(m2-1)x2+(m-1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程.

3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.

4、用配方法解方程x2+8x+9=0时,应将方程变形为()

a.(x+4)2=7b.(x+4)2=-9

c.(x+4)2=25d.(x+4)2=-7

学习内容学习随记

例2、解下列一元二次方程

(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)

(3)(x+1)(2-x)=1(选择适当的方法解)

例3、1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?

2、如图,在rt△acb中,∠c=90°,ac=6m,bc=8m,点p、q同时由a、b两点出发分别沿ac,bc方向向点c匀速运动,它们的速度都是1m/s,几秒后△pcq的面积为rt△acb面积的一半?

一元二次方程的教案篇4

教学目标:

(1)理解一元二次方程的概念

(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

(2)会用因式分解法解一元二次方程

教学重点:

一元二次方程的概念、一元二次方程的一般形式

教学难点:

因式分解法解一元二次方程

教学过程:

(一)创设情景,引入新课

实际例子引入:列出的方程分别为x-7x+8=0,(x-7)(x+1)=89,x+8x-9=0

由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

练习

2:一元二次方程的一般形式(形如ax+bx+c=0)

任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

3:讲解例子

4:利用因式分解法解一元二次方程

5:讲解例子

6:一般步骤

练习

(三)小结

(四)布置作业

板书设计

数学教案-一元二次方程

一元二次方程的教案篇5

教材分析

1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

学情分析

1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。

3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

教学目标

1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

教学重点和难点

1、重点:概念的形成及一般形式。

2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

一元二次方程的教案篇6

一、教学目标

知识与技能

(1)理解一元二次方程的意义。

(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

过程与方法

在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感、态度与价值观

通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

二、教材分析:教学重点难点

重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

难点:准确理解一元二次方程的意义。

三、教学方法

创设情境——主体探究——合作交流——应用提高

四、学案

(1)预学检测

3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?

五、教学过程

(一)创设情境、导入新

(1)自学本p2—p3并完成书本

(2)请学生分别回答书本内容再

(二)主体探究、合作交流

(1)观察下列方程:

(35-2x)2=9004x2-9=03y2-5y=7

它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?

(2)一元二次方程的概念与一般形式?

如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56

(三)应用迁移、巩固提高

例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?

x2-x=13x(x-1)=5(x+2)x2=(x-1)2

例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

解:去括号得

3x2-3x=5x+10

移项,合并同类项,得一元二次方程的一般形式

3x2-8x-10=0

其中二次项系数为3,一次项系数为-8,常数项为-10.

学生练习:书本p4练习

(四)总结反思拓展升华

总结

1.一元二次方程的定义是怎样的?

2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。

反思

方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0且c≠0.

(五)布置作业

(1)必做题p4习题1.1a组1.2

(2)选做题: 若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。

一元二次方程的教案篇7

教学目标

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:

1.教材分析:

1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析

理解一元二次方程的定义:

是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

教学目的

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:

重点:

1.一元二次方程的有关概念

2.会把一元二次方程化成一般形式

难点:一元二次方程的含义

教学过程设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

分析:

1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程(x(x十5)=150)

深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

二、新课

1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

3.强化一元二次方程的概念

下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:

(2)x2=4

(3)(x十3)(3x·4)=(x十2)2;

(4)(x—1)(x—2)=x2十8

从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

4.一元二次方程概念的延伸

提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0(a≠0)

1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称

3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本p6)

1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=o(2)x2—3x十4=0;(3)3x2-5=0

(4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

课堂小节

(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数

课外作业:略

一元二次方程的教案篇8

知识点:

二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法

重点、难点:

二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法

教学形式:

例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!

1、自我介绍:30s

大家下午好!我叫xxx,20xx年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!

2、一元二次方程概念、系数、根的判别式:8min30s

我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:

(1)x-10x+9=0是1-109

(2)x+2=0是102

(3)ax+bx+c=0不是a必须不等于0(追问为什么)

(4)3x-5x=3x不是整理式子得-5x=0所以为一元一次方程(追问为什么)好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!

一元:只含一个未知数

二次:含未知数项的最高次数为2

方程:一个等式

一元二次方程的一般形式为:ax+bx+c=0(a≠0)其中,a为二次项系数、b为一次项系数、c为常数项。记住,a一定不为0,b、c都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式!至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ

3、一元二次方程的解法:20min

那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理

(1)直接开方法

遇到形如x=n的二元一次方程,可以直接使用开方法来求解。若n0,则x=±n。同学们能明白吗?(2)配方法

大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:

简单的一眼看出来的:x-2x+1=0(x-1)=0(让同学回答)

需要变换的:2x+4x-8=0

步骤:将二次项系数化为1,左右同除2得:x+2x-4=0

将常数项移到等号右边得:x+2x=4

左右同时加上一次项系数一半的平方得:x+2x+1=4+1

所以有方程为:(x+1)=5形似x=n

然后用直接开平方解得x+1=±5x=±5-1

大家能听懂吗?现在我们一起来做一道练习题,2min时间,大家一起报个答案给我!

题目:1/2x-5x-1=0答案:x=±+5

大家都会做吗?还需要讲解详细步骤吗?

(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc,没有公式法求不出来的解,当然啦,除非是无解~

首先,公式法里面的公式大家还记得吗?

x=(-b±2-4ac)/2a

这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。我们来做一道简单的例题:

3x-2x-4=0

其中a=3,b=-2,c=-4

带入公式得:x=((-(-2))±2)2-4x(-4)(2x3)

化简得:x1=(1-)/3x2=(1+)/3

同学们你们解对了吗?

使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~

(4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!

简单来说,因式分解就是将多项式化为式子的乘积形式。

比如说ab+ab可以化成ab(1+a)的乘积形式。

那么对于二元一次方程,我们的目标是要将其化成(mx+a)x(nx+b)=0这样就可以解出x=-a/mx=-b/n

我们一起做一个例题巩固一下:4x+5x+1=0

则可以化成4x+x+4x+1=0x(4x+1)+(4x+1)=0(x+1)(4x+1)=0

所以有x=-1x=4

同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。练习题:x-5x+6=0x=2x=3

x-9=0x=3x=-3

4、总结:1min

好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc系数,会用Δ=b-4ac来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!

一元二次方程的教案8篇相关文章:

秋天的花教案精选8篇

秋天的花教案最新8篇

故事盒的活动教案8篇

数学下册的教案通用8篇

数学下册的教案8篇

8的分解组成大班教案7篇

大班教案8的组成反思7篇

树的秘密教案反思8篇

分数除法的教案模板8篇

汉字一的教案8篇

一元二次方程的教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
78779