数与运算的教案通用5篇

时间:
Mute
分享
下载本文

以学生为中心的教案,关注每个孩子的学习节奏与方式,为了确保教案的可操作性,建议进行小组讨论和交流,以下是丫丫文章网小编精心为您推荐的数与运算的教案通用5篇,供大家参考。

数与运算的教案通用5篇

数与运算的教案篇1

教学内容:

p76-77练习十二第6-11题。

教学目标:

1.进一步掌握分数四则混合运算的顺序,并能灵活运用所学规律和定律进行简便计算。

2. 提高学生运用所学知识解决问题的'能力。

教学重点:

四则混合运算的运算顺序。

教学难点:

能运用所学规律和定律进行简便计算。

课前准备:

小黑板

课时安排:

1课时

教学过程:

一、直接写出下面各题的得数。

6/7÷6/11 1/9×3 1÷2/3 3/4÷3/5

11/6×3/11 4/9÷3/8 24×5/6

二、完成练习十二第6-11题

1.完成第6题

指名学生板演,集体练习评讲。

2.完成第7题左边竖排。

让学生先划出运算顺序,然后独立完成,集体评讲。

3.计算下面各题,能简便的要简便。

4/5×10/3—2/5×10/3 7/8÷3/8—1/8÷3/8 5/9×(18/35—9/40)

指名板演,集体评讲。

4.完成第8题

先让学生独立列出算式,然后解答,集体评讲。

5.完成第9题

学生读题,弄清题意,列式解答。

6.完成第11题

学生弄清题意,找出所需条件,列出算式,解答,师生共同评讲。

三、强化训练

1.在( )里填上适当的分数。

4/5×( )-2/5=2 ( )÷6/25-2/7×7/8=19/4

2.小明是个粗心大意的孩子,在做一道除法算式时,把除数5/6看作5/8来计算,算出的结果是120,这道算式的正确结果是多少?

学生先思考,尝试解答,教师适当点评。

四、本课总结

五、课堂作业

完成第7题第2竖排,第10题。

六、教学思考题。

数与运算的教案篇2

本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。

第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。

第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。

教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。

第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的`百分数问题中去。

一、 一题两解既含运算顺序,又含运算律的内容。

例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。

在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。

比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如139/10,交叉约分时应用了乘法结合律,只是没有写出1/4(110);又如253/4,约分时应用了乘法交换律,只是241/5这个过程没有写出来。最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。

应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6656/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。

二、 数形结合教学较复杂问题的数量关系。

例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式459;也可以根据女运动员人数占运动员总人数的(19)列出算式45(19)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。

两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。

练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式54在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。

数与运算的教案篇3

教学内容:

教科书第39—40页。

教材分析:

这部分内容主要让学生在解决实际问题的过程中认识中括号,理解并掌握含有中括号的三步混合运算的运算顺序,学会正确地计算。例题安排了三个层次的学习活动。第一层次,从学生熟悉的问题情境中提出问题要求学生立解答,引导学生交流自己的解题过程。第二层次,告诉学生要先算出美术组的人数,列综合算式时,就要用到中括号,引导学生列出正确的综合算式,并按顺序完成计算。第三层次,引导概括含有中括号的混合运算的运算顺序,把学生在学习过程中积累的经验上升为数学结论。

教学目标:

1、让学生联系解决实际问题的过程认识中括号,以及中括号在混合运算中的作用,理解并掌握含有中括号的三步混合运算的顺序,并能正确地进行运算。

2、让学生经历认识和理解混合运算的运算顺序的过程,进一步体会数学与生活的联系,产生自主探索的兴趣,获得发现数学结论的成功体验。

3、培养学生立解决问题的'意识和认真、严谨的学习习惯。

教学重点:

掌握含有中括号的混合运算的运算顺序。

教学难点:

理解中括号的作用是改变运算顺序。

教学准备:

挂图、小黑板。

教学过程:

一、复习旧知,引入新课

1、观察算式,说说下面两题的运算顺序。

小黑板出示:120÷6+4×2120÷(6+4)×2

指名回答,并说出理由,集体口头解答。

2、小结计算顺序。(小黑板出示)

回忆:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

算式里有小括号,要先算小括号里面的。

提问:比较这两题,你还发现了什么?

总结:括号能改变算式的运算顺序。

[设计意图:巩固前两课所学的混合运算的运算顺序,为新知的学习做准备]

二、自主探索,学习新知

1、创设情境,整理信息。

谈话:学校艺术节快到了,每个兴趣小组正在进行紧张的练习,让我们一起去看一看!(出示2个小挂图)

提问:从图中你了解到哪些信息?(指名汇报信息)

根据回答板书相关信息:航模组:男生8人、女生6人

美术组:是航模组的2倍

谈话:请你列综合算式,算出美术组有多少人。

指名板演,并说说每一步算的是什么。

2、提出问题,分步解答。

继续出示挂图:合唱组及问题。

板书:合唱组:84人

提问:要我们解决的问题是——?

提问:合唱组的人数是美术组的几倍,你想到了哪个数量关系式?

板书:合唱组的人数÷美术组的人数=几倍

提问:解决这个问题,关键要先求出什么?(美术组的人数)

谈话:刚才我们已经算过了,只要再加一步。

板书:84÷28=3(口答)

3、尝试列综合算式。

谈话:刚才,我们分步解答了这个问题,先算出了——(美术组的人数),然后用——(合唱组的人数÷美术组的人数),现在你能不能把这两个算式合并成一个综合算式,在自备本上试试看,只列式。

(学生尝试,教师巡视,指名用不同方法的学生板演)

4、说明:数学上规定,这个算式中已经有小括号了,再添加括号,就要用到中括号,(出示方法三:84÷[(8+6)×2])。

谈话:像这样的括号就是中括号。伸出手来,一起跟我写一遍(描)。

让学生尝试加中括号:请你在你的综合算式里添上中括号。

揭示课题:今天这节课,我们就要来研究含有中括号的混合运算。(板书课题)

谈话:这时的算式中有小括号,又有中括号,应该怎样计算呢?同桌互相说说这题的运算顺序。

有信心试一试吗?(立完成计算,最后集体校对)

5、介绍递等式中一步一步脱式的过程和书写的格式要求(等号位置,小括号算好后脱掉,移下来的是中括号)。

提问:你觉得第一步应该先算?也就是要算出——(航模组的人数)。

84÷[(8+6)×2]

=84÷[14×2]

=84÷28

=3

谈话:口答。有错的同学请你订正一下。

谈话:回顾头来看一下,这里的两个算式,一个只有小括号,一个又添加了中括号,那这个中括号在这里起到了什么作用?

总结:对呀,中括号和小括号一样,也能改变题目中的运算顺序。

谈话:在一个算式里,既有小括号又有中括号,应该按什么顺序运算?(学生尝试概括运算顺序)

6、总结含有中括号的混合运算的运算顺序。

(小黑板出示:在一个算式里,既有小括号,又有中括号,要先算小括号里的,再算中括号里面的)

谈话:打开书39页,请你把书上的空白填一下,填好了和黑板对照一下。

设计意图:把例题分解组合成两问的题目,利于以旧引新,充分发挥旧知在学习新知中的“脚手架”作用,也有利于学生在总体上把握题目数量之间的关系和结构,使教学直指本课的要点含有中括号的混合运算。在解决实际问题的过程中掌握运算顺序,能使学生对中括号的作用以及运算顺序有更深的了解。

三、巩固练习,不断深化

1、做“想想做做”第1题。(重点说运算顺序)

同桌相互说说每题的运算顺序,立完成,集体评讲。

2、做“想想做做”第2题。(比一比,算一算)

(1)观察每组的三道题,说说他们的相同和不同之处。

(同桌活动,每人说一组题。指名说:重点讨论同样的数、符号,为什么运算顺序会不一样)

(2)男、女生各计算一组,交流计算过程和结果。

总结:看来,虽然每组的三道题目数据一样、运算符号一样,但因为有了小括号和中括号,所以运算顺序就不一样了,结果也不一样了。

(还可让学生说说体会,仔细看题、细心计算的习惯培养)

3、做“想想做做”第3题。

(1)观察情境图,理解图意。

(2)理解题意后,立完成。

(3)交流时说说是怎么算的。

设计意图:围绕本课的教学重点,让学生在比比算算的过程中进一步体会有中括号的混合运算的运算顺序,同时把相关内容进行了整理,使学生对混合运算的顺序有更全面的认识。

四、拓展知识,评价总结

1、谈话:每一个数学知识、任何数学方法的背后,总是凝结着人类漫长的探索过程。一个个括号的产生,也经历了漫长的发展历程,凝聚着人类无穷的勤劳和智慧。阅读“你知道吗?”

学生阅读,交流:从中你知道了什么?

提问:这节课我们学习了什么?

(1)为什么要引入中括号?

(2)中括号、小括号的作用是什么?

(3)含有中括号的混合运算的顺序是什么?

2、根据运算顺序添上小括号或中括号。

(1)32×800-400÷25先减再乘最后除。

(2)32×800-400÷25先除再减最后乘。

(3)32×800-400÷25先减再除最后乘。

数与运算的教案篇4

分数混合运算

教学目标

使学生掌握分数乘加、乘减混合运算.

教学重点

1.掌握分数混合运算的顺序

2.会用乘法的运算定律在分数乘法中进行简算

教学难点

分数乘法的简算

教学过程

一、复习

(一)说说你是怎样算的?

(二)看看下面每组算式,它们有什么样的关系.

○ ○ ○

(三)那么分数混合运算如何计算呢?能否应用运算定律简算呢?这节课我们来一起研究.

板书课题:分数混合运算

二、探索、悟理

(一)出示例题

(二)读题之后请同学试做(板演在黑板上)

教师:这道题应该先算哪一步,再算哪一步?(强调运算顺序)

(三)做一做

教师提问:你按怎样的运算顺序计算的?

(四)小结

教师提问:谁能说一说分数乘加、乘减这样的混合运算按怎样的运算顺序计算呢?

分数混合运算顺序:

在一个分数混合算式中,既有一级运算,又有二级运算,先做第二级运算,后做一级运算;在有括号的算式里,先做括号里边的,再做括号外边的.

(五)仔细观察下面两题,计算中有没有好方法使它们算得又快又准.

小组汇报结果.

= × ×

教师提问:说一说为什么这样算,依据什么?(乘法交换律、结合律、分配律)

教师说明:由这两题可以看出,乘法运算定律同样可以应用在分数中.

(七)做一做

三、归纳、质疑

(一)这节课学习了什么知识?(学生自己小结)

混合运算、分数乘法中的简算.

(二)你在学习中遇到了什么没有得到解决的问题吗?

四、训练、深化

(一)巩固混合运算

1.判断

(×) (×)

(√) (√)

2.计算

(二)巩固简算

1.填空

2.简算

(三)提高练习

五、课后作业

(一)用简便方法计算下面各题

六、板书设计

分数混合运算

教学设计点评

学生已通过第七册的学习,对整数、小数混合运算的运算顺序比较熟悉了,所以,本教学设计注意以旧引新,通过复习,让学生讨论、试做,发挥学生的主体性,掌握分数混合运算的运算顺序和计算技巧。巩固练习中,从基本练习一直到提高题,设计有层次,有坡度。

数与运算的教案篇5

六年级下册《运算律》教案

教学内容

教材79页运算律

教学目标

知识技能

1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。

2.能运用运算定律进行一些简便运算。

数学思考与问题解决

能根据具体情况,选择算法,发展思维的灵活性。

情感态度

在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,进一步形成独立思考和探究问题的意识、习惯。

教学重点

1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。

2.能运用运算定律进行一些简便运算。

教学难点

能根据具体情况,选择合适的算法。

教法学法

自学与合作相结合、讲解与互帮相结合。

教学准备

收集一些学生平时做错的例子,多媒体

教学过程

(一)复习导入

1.我们学过了哪些有关整数的运算律?(用提问的方式复习)

2.它们有什么作用?

(二)系统复习

1.回顾和总结学过的整数运算律。(显示,分别复习运算律的文字叙述,和字母公式)

(1)加法交换律 a+b=b+a

(2) 加法结合律 (a+b)+c=a+(b+c)

(3) 乘法交换律 ab=ba

(4) 乘法结合律 (ab)c=a(bc)

(5)乘法对加法的分配律 (a+b)c=ac+bc

2.用多种方式验证这些运算律。(完成79页第1题的第2小题,由学生自告奋勇回答书上的`题目,由其他全体学生判断正确与否),

3.认识到整数运算律在小数、分数运算中仍然成立。(完成79页第2题,四人小组合作,互相举例说明,然后推选代表到讲台上展示)

4.感受在数系的扩充过程中,人们总是希望在新的数系中运算律能尽量地成立。

(1)出示79页巩固应用的第1题

(2)引导学生观察、思考。(自己通过观察、分析找出结果)

(3)交流。(满足数的运算的需要也是数扩充的重要原因,也是产生分数和负数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。)

(4)数学万花筒。(自主阅读)

三、习题设计(贯穿于教学过程)

1.选用合适的方法计算下面各题:

46+32+54 0.7+3.9+4.3+6.3 25╳49╳4

8╳(36╳125) 8╳4╳12.5╳0.25 546+785-146

?设计意图】这是六道运用运算律解决计算题的基本题目,主要考察学生掌握运算律的情况。让学生自己在下面做,然后选六个学生上台演板,请学生自己上台讲评。

2.用乘法对加法的分配律计算下面各题

2.7╳4.8+2.7╳5.2 905╳99+905 13╳10.2

?设计意图】在下面就有学生反映乘法对加法的分配律掌握的不好,因此增加了乘法对加法的分配律的练习。在学生练习完以后,仍然发现个别学生掌握的不好。我增加讲述一个小故事帮助学生记忆。故事是:说一个父亲有一大一小两个儿子,过节了父亲去大儿子家走亲戚,当然不能偏向也要去小儿子家走亲戚呀。其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。

板书设计

运算律

(1)加法交换律 a+b=b+a

(2) 加法结合律 (a+b)+c=a+(b+c)

(3) 乘法交换律 ab=ba

(4) 乘法结合律 (ab)c=a(bc)

(5)乘法对加法的分配律 (a+b)c=ac+bc

教学反思:

在学生练习完以后,仍然发现个别学生对乘法分配律掌握得不好,我们还可以增加一个故事,来加深学生对乘法对加法的分配律的理解。有父子三人分别代表三个数,其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。

数与运算的教案通用5篇相关文章:

小班吹泡泡的教案通用5篇

好玩的圈教案通用5篇

中班t的教案通用5篇

会说话的水教案通用5篇

狼和小羊的教案通用5篇

小蚂蚁搬西瓜的教案通用5篇

认识马的教案通用5篇

50以内的数学教案通用5篇

大班水的活动的教案通用5篇

数学10的加减法教案通用5篇

数与运算的教案通用5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
183441